

PII: S0040-4020(96)00583-2

New Cyclic Dichalcogenonio-Selenuranes Induced by Transannular Multichalcogenides Participation

Hisashi Fujihara,*,† Hisatomo Mima, and Naomichi Furukawa*

† Environmental Science Research Institute, Kinki University, Kowakae, Higashi-Osaka 577, Japan Department of Chemistry, University of Tsukuba. Tsukuba, Ibaraki 305, Japan

Abstract: The significant conformational change was found when cyclic chalcogenides, 1,11-(methanoselenomethano)-5H,7H-dibenzo[b,g][1,5]diselenocin (1) and 1,11-(methanothiomethano)-5H,7H-dibenzo[b,g][1,5]selenathiocin (3), were dissolved in concentrated H_2SO_4 ; *i.e.*, the twin-chair forms of 1 and 3 in CHCl₃ were converted completely into the twin-boat forms of the selenurane dications 2 and 4 in H_2SO_4 . Two-electron oxidation of 1 or 3 with 2 equiv of NOPF₆ gave the cyclic selenurane dication $2PF_6^-$ salt 2a or 4a which contains two selenonium or two sulfonium cations at the apical positions. The selenurane 2a or 4a could be reduced readily to neutral 1 or 3 upon treatment with PhSH, Ph₃P, phenothiazine, or Sml₂; that is, 2a or 4a acts as an oxidizing agent. Copyright © 1996 Elsevier Science Ltd

The chemistry of hypervalent selenuranes is much less developed than that of hypervalent sulfuranes, and sulfuranes with apical chalcogen or nitrogen ligands are little known.^{1,2} Generally, sulfuranes and selenuranes bear two electronegative groups such as oxygen atoms or halogen atoms at the apical positions. Although we recently showed that the transannular interaction between two heteroatoms (Se-Se) of selenium heterocycles produced the diselenide dication, such behavior by fourth-row elements and multiheteroatoms has received less attention. As such an example, two-electron oxidation of a cyclic bis-selenide, 1,5-diselenacyclooctane, with nitrosyl tetrafluoroborate gave the diselenide dication salt.³

Most recently, we have found that the transannular multiheteroatoms interaction in quadruply *ortho*-bridged biphenyl ring system induced the hypervalent selenuranes containing transannular three-center bond. Namely, the transannular bond between the three chalcogen atoms (Se, S) of new cyclic chalcogenides, 1,11-(methanoselenomethano)-5H,7H-dibenzo[b,g][1,5]selenathicoin (3), was formed in the oxidation of 1 and 3 with concd H_2SO_4 or 2 equiv of NOPF₆. This multicenter chalcogenide participation provides a new hypervalent σ -selenurane with two apical selenonio or sulfonio ligands. Its selenurane dication undergoes a reversible two-electron reduction. Thus, two-electron redox reaction of 1 or 3 is accompanied by conformational changes of the chair and boat forms. This paper presents the preparation and the chemical property of new cyclic σ -selenuranes having two apical selenonio or sulfonio ligands, together with their interconvertible redox structures by multicenter heteroatom participation.

10376 H. FUJIHARA et al.

1 : X = Se

3 : X = S

 $2 : X = Se^+, Y = 2HSO_4$

2a : X = Se⁺, Y = 2PF₆

4 : X = S+, Y = 2HSO4

4a: X = S+, Y = 2PF₆

Results and Discussion

Synthesis of Cyclic Selenides

Compounds 1 and 3 were prepared as follows (Scheme 1). Treatment of the diazonium salt of 2,6-dimethylaniline with Na₂Se gave bis(2,6-dimethylphenyl)selenide (7) which was irradiated using a high-pressure mercury lamp after addition of *N*-bromosuccinimide (NBS) to afford the tetra-bromide 8. The compound 8 was treated with Na₂Se or Na₂S using a high dilution technique at room temperature to give the compound 1 or 3.

Oxidation of the selenides 1 and 3 with *m*-chloroperbenzoic acid (MCPBA) gave the corresponding oxides 5 and 6 (Scheme 2).

Scheme 1

Scheme 2

1: X = Se

3 : X = S

5 : X = Se

6 : X = S

Conformation of Cyclic Selenides

The conformational behaviors in cyclic selenides 1 and 3 concerning eight-membered ring are of interest, because in general, three different conformers, *i.e.*, twin-chair, boat-chair, and twin-boat forms can exist as shown in Chart 1.

The conformers can be assigned by the ^{1}H NMR spectral data for the benzylic protons of the eightmembered ring. 5 The ^{1}H NMR spectrum of 1 in CDCl₃ at 25 °C shows the benzylic methylene protons as an AB quartet peak at δ 3.88 and 5.33 (J=12.8 Hz) which is assigned to the twin-chair form. The ^{1}H NMR spectra of 1 do not change over the temperature range from -50 °C (in CDCl₃) to +180 °C [in (CD₃)₂SO], indicating that 1 is conformationally rigid. The proton-coupled 77 Se NMR spectrum of 1 in CHCl₃ shows the two peaks at δ 209 (s, -SeAr) and at δ 366 (t, $^{2}J_{\text{Se-H}}=31$ Hz, -SeCH₂Ar). 6,7 Similarly, the ^{1}H NMR spectrum of 3 shows that 3 exists as a twin-chair form. These conformational analyses are consistent with that of the sulfur analogous compound of 1 and 3 which was characterized by X-ray diffraction method and the ^{1}H NMR spectroscopy. 8

In such compounds, if one could generate a cationic species on the one group, the other functional group could interact to stabilize the cationic species, resulting in the generation of a transannular bond.

Chart 1

Dichalcogenoselenurane Dications

When tris-selenide 1 was dissolved in concd D_2SO_4 (98%) at room temperature, 9 the conformation of 1 in CDCl₃ was changed completely to the twin-boat form 2 in D_2SO_4 as shown by ¹H NMR spectroscopy, *i.e.*, the benzylic methylene protons appear at δ 4.07 and 4.59 (ABq, J = 16.0 Hz) (Scheme 3). This D_2SO_4 solution 2 was stable for several weeks and no deuterium exchange was observed at all. More significant spectroscopic evidence for the formation of 2 was obtained in the ⁷⁷Se NMR spectrum. The proton-noise-decoupled ⁷⁷Se NMR spectrum of the H₂SO₄ solution 2 exhibits two resonances at δ 544 (-SeCH₂Ar)¹⁰ and at δ 817 (-SeAr) (ratio 2:1) indicating the remarkable downfield shift; the former resonance is assigned to the selenonium cation, and the latter peak to the selenurane structure, particularly, each peak exhibits two clearly resolved satellite peaks due to the ⁷⁷Se-⁷⁷Se coupling (large coupling constant of ¹J_{Se-Se} = 210 Hz) about each central peak. This observation of ⁷⁷Se satellites clearly indicates the occurrence of bond formation between the three selenium atoms.

10378 H. Fujihara et al.

Scheme 3

A selenurane $2PF_6^-$ salt 2a was isolated from the two-electron oxidation of 1 with 2 equiv of NOPF₆, a one-electron-oxidant. The selenurane 2a was stable and easily handled. The structure of 2a in CH₃CN was analyzed by multinuclear NMR spectroscopy. Specially, the ⁷⁷Se NMR spectrum of 2a shows two resonances at δ 535 (-SeCH₂Ar) and δ 830 (-SeAr), and the ⁷⁷Se satellites in the proton-decoupled ⁷⁷Se NMR spectrum of 2a give a value of 200 Hz for ${}^{1}J_{Se-Se}$; *i.e.*, 2a has the selenurane structure having two apical selenonium cations. The selenurane 2a exists solely as a single conformer from -40 to +75 °C as evidenced by its ${}^{1}H$ NMR spectrum. The conformation of 2a was fixed as the boat form by transannular bonds between the three selenium atoms, although normally the chair conformer has been shown to be more stable and rigid than the boat conformer.

Similarly, oxidation of 3 with concd H_2SO_4 or 2 equiv of NOPF₆ gave the selenurane 4 or its salt 4a. The ⁷⁷Se NMR spectrum of 3 in CHCl₃ shows a singlet peak at δ 207, while 4a in CH₃CN shows a singlet at δ 947 as characteristic of a selenurane. This is the first example of multicentered bond formation involving two-different chalcogens.

Reactivity of Dichalcogenoselenurane Dications

Reaction of benzenethiol (PhSH) (2 equiv) with **2a** (1 equiv) in CH₃CN under an Ar atmosphere at room temperature for 1 h gave diphenyl disulfide (PhSSPh) (87%) as the oxidation product and the neutral **1** (85%) as the reduction product.

Similar treatment of **2a** with triphenylphosphine (Ph₃P, 2 equiv) afforded **1** (90%) and the phosphine oxide (Ph₃P=O) (76%) after treatment with H₂O. Ph₃P is known to transfer electron to suitable acceptor resulting in the formation of its phosphinium cation radical which reacts with H₂O to give Ph₃P=O.¹¹

The selenurane 2a could also be reduced by phenothiazine (PTz, 2 equiv) in CH₃CN to give 1 (91%) by two-electron transfer, accompanied by the formation of the cation radical of PTz as evidenced by the UV-visible spectrum ($\lambda_{max} = 437$ and 515 nm).¹²

Interestingly, 2a undergoes two-electron reduction to give 1 in quantitative yield by treatment with samarium (II) iodide, SmI₂, ¹³ at room temperature. From these novel results, an electron-transfer pathway is likely and 2a is a good oxidant.

Reduction of **2a** was also facile electrochemically; the cyclic voltammetry of **2a** in CH₃CN revealed that the reduction potential is remarkably lower (-0.10 V vs. Ag/0.01 M AgNO₃) than that of some selenonium salts (ca. -1.5 to -1.8 V vs. Ag/0.01 M AgNO₃), though the electrochemistry of selenuranes and selenonium salts is virtually unknown.

Selenurane Dications from Se- and S-Oxides

The selenurane dication salts 2a and 4a reacted with H₂O to give the corresponding oxides 5 and 6. The benzylic methylene protons in the ¹H NMR spectrum of the selenoxide 5 (CDCl₃) appears as two types of AB quartet peaks at δ 3.91, 5.29 (ABq, J = 13.5 Hz, 4H, CH₂) and 4.18, 5.94 (ABq, J = 11 Hz, 4H, CH₂) which are assigned to the twin-chair form. While, the ⁷⁷Se NMR spectrum of 5 in CDCl₃ exhibits three absorptions at δ 230 (s), 370 (t, J_{Se-H} = 30.3 Hz) and 936 (t, J_{Se-H} = 12.3 Hz), and its ¹³C NMR spectrum shows the benzylic carbons at δ 32.4 and 61.4. Dissolution of the selenoxide 5 in concd D₂SO₄ led to the selenurane dication 2 as evidenced from the ¹H, ¹³C and ⁷⁷Se NMR spectra (Scheme 4). Hydrolysis of a solution of the selenurane 2 in D₂SO₄ afforded exclusively the selenoxide 5.

Analogous results were obtained in the sulfoxide 6.

Scheme 4

Se
$$XO$$
 H_2SO_4 H_2O $2HSO_4$

5: $X = Se$
6: $X = S$

Summary

The facile structural changes between chair and boat forms in the redox reactions of 1 and 3 are ascribed to the stabilization of the oxidized species by multicenter chalcogenide participation, *i.e.*, the formation of selenurane dications 2 and 4, and the destabilization by transannular lone pair-lone pair repulsion of the neutral boat-forms derived from the reduction of the dications. Hydrolysis of the selenurane dications 2 and 4 led to the selenoxide 5 and the sulfoxide 6 which were converted into the dications 2 and 4 upon treatment with concd H₂SO₄. These hypervalent dichalocogenoselenuranes 2 and 4 containing Se-Se-Se and S-Se-S bond are new functional groups.

Experimental Section

All NMR spectra were measured on a JEOL LMN-EX-270, or a BRUKER MSL-400 spectrometer. IR spectra were obtained on a JASCO A-3 spectrometer. Mass spectra were taken with a Shimazu QP-2000 and a JEOL JMX SX102 mass spectrometer. Elemental analyses were carried out by the Chemical Analysis Center at this university. For cyclic voltammetry measurements, Hokuto Denko Co. Model HB-104 electrochemical apparatus was used in conjunction with a Yokokawa Co. Model 3025A X-Y recorder.

All reagents were obtained from Wako Pure Chemical Industries Ltd., Tokyo Kasei Co. Ltd., or Aldrich Chemical Co. The reagents used as reaction solvents were further purified by general methods.

Synthesis of Cyclic Tris-selenides 1 and 3. To 2,6-dimethylaniline (77 g, 0.6 mol) was added 6 N hydrochloric acid (160 ml). After cooling the resulting hydrochloride at 0 °C, to the stirred mixture was added an aqueous NaNO₂ (46 g, 0.64 mol) solution. Then, to a stirred solution of K₂Se (0.6 mol) was

added the solution of the diazonium salt of 2,6-dimethylaniline at 40 °C and then the mixture was heated at 65 °C for 2 h. The organic layer was extracted with n-hexane. The mixture was purified by column chromatography (silica gel, eluent; n-hexane) and recrystallized from n-hexane to afford bis(2,6-dimethylphenyl)selenide (7) as white crystals in 11% yield. 7: mp 84-85 °C; 1 H-NMR (CDCl₃) 3 2.27 (s, 12H, Me), 6.97-7.10 (m, 6H, ArH); 13 C-NMR (CDCl₃) 3 23.6. 127.3, 128.0, 133.0, 141.5; 77 Se-NMR (CDCl₃) 3 255 (s); MS, $^{m/z}$ 290 (M+). Anal. Calcd for C₁₆H₁₈Se: C, 66.43; H, 6.27. Found: C, 66.41; H, 6.28.

The mixture of selenide **7** (6.4 g, 22.1 mmol) and *N*-bromosuccinimide (16.6 g, 92.8 mmol) in dry CCl₄ (350 ml) was irradiated using a high-pressure mercury lamp under an Ar atmosphere for 24 h. The resulting white precipitates were filtered and the mixture was purified by column chromatography (silica gel, eluent; n-hexane-CHCl₃) to afford tetra-bromide (**8**) as white crystals in 21% yield. **8**: mp 160-168 °C; ¹H-NMR (CDCl₃) & 4.63 (s, 8H, Me), 7.28-7.36 (m, 2H, ArH), 7.40-7.46 (m, 4H, ArH); ¹³C-NMR (CDCl₃) & 34.2, 129.5, 132.0, 132.3, 141.9. Anal. Calcd for C₁₆H₁₄SeBr₄: C, 31.77; H, 2.33. Found: C, 31.59; H, 2.22.

To a stirred solution of tetra-bromide **8** (1.12 g, 1.85 mmol) in EtOH-CH₂Cl₂ (320 ml; 1:1) was added a solution of Na₂Se (3.7 mmol) in EtOH. After stirring at room temperature for 5 h, the resulting solid was separated by filtration and the residue was concentrated under vacuum. The mixture was purified by column chromatography (silica gel, eluent; CHCl₃) to give tris-selenide **1** in 32% yield. The tris-selenide **1** was further purified by recrystallization. **1**: mp 273-275 °C (decomp); ¹H-NMR (CDCl₃) δ 3.88, 5.33 (ABq, J = 12.8 Hz, 8H, CH₂), 6.97-7.01 (m, 4H, ArH), 7.07-7.13 (m, 2H, ArH); ¹³C-NMR (CDCl₃) δ 32.9, 127.1, 130.3, 133.7, 149.3; ⁷⁷Se-NMR (CDCl₃) δ 209 (s), 366 (t, J_{Se-H} = 31 Hz); MS, m/z 444 (M⁺). Anal. Calcd for C₁₆H₁₄Se₃: C, 43.36; H, 3.18. Found: C, 43.33; H, 3.07.

Cyclic selenide **3** was prepared by the similar procedures as **1**. **3**: mp 271-274 °C (decomp); ¹H-NMR (CDCl₃) δ 3.79, 5.27 (ABq, J = 14.4 Hz, 8H, CH₂), 6.97-7.03 (m, 4H, ArH), 7.08-7.15 (m, 2H, ArH); ¹³C-NMR (CDCl₃) δ 42.3, 127.8, 130.3, 134.5, 148.0; ⁷⁷Se-NMR (CDCl₃) δ 207 (s); MS, m/z 350 (M⁺). Anal. Calcd for C₁₆H₁₄S₂Se: C, 55.00; H, 4.04. Found: C, 54.86; H, 3.94.

Preparation of Selenoxide 5 and Sulfoxide 6. To a solution of selenide 1 (200 mg, 0.45 mmol) in CHCl₃ (50 ml) was added a solution of *m*-chloroperbezoic acid (MCPBA; 97 mg, 0.45 mmol) in CHCl₃ (15 ml) at 0 °C. The mixture was stirred at 0 °C for 1 h and then at room temperature for 3 h. The mixture was treated with ammonia and the crude product was purified with column chromatography (silica gel, eluent; CHCl₃-MeOH) to yield the selenoxide **5** (24% yield) and the recovered **1** (61%). **Se-oxide 5:** mp 230-235 °C (decomp); FT-IR (KBr) 820 cm⁻¹; ¹H-NMR (CDCl₃) δ 3.91, 5.29 (ABq, J = 13.5 Hz, 4H, CH₂), 4.18, 5.94 (ABq, J = 11 Hz, 4H, CH₂), 7.08-7.14 (m, 2H, ArH), 7.19-7.30 (m, 4H, ArH); ¹³C-NMR (CDCl₃) δ 32.4, 61.4, 128.7, 129.6, 130.9, 135.6, 137.1, 150.1; ⁷⁷Se-NMR (CDCl₃) δ 230 (s), 370 (t, $J_{\text{Se-H}} = 30.3$ Hz), 936 (t, $J_{\text{Se-H}} = 12.3$ Hz); MS, m/z = 444 (M⁺-16). Anal. Calcd for C₁₆H₁₄OSe₃: C, 41.85; H, 3.07. Found: C, 41.53; H, 3.17.

Similar oxidation of the sulfide 3 with MCPBA gave the sulfoxide 6 (54% yield). **S-oxide** 6: mp 287-290 °C (decomp); FT-IR (KBr) 1040, 1015 cm⁻¹; ¹H-NMR (CDCl₃) δ 3.75, 5.27 (ABq, J = 14.6 Hz, 4H, CH₂), 4.45, 5.09 (ABq, J = 13.5 Hz, 4H, CH₂), 7.02-7.20 (m, 6H, ArH); ¹³C-NMR (CDCl₃) δ 41.4, 58.6,

129.4, 129.8, 132.2, 134.0, 137.3, 146.7; 77 Se-NMR (CDCl₃) δ 227 (s); MS, m/z 366 (M⁺). Anal. Calcd for C₁₆H₁₄OS₂Se: C, 52.60; H, 3.86. Found: C, 52.25; H, 3.87.

Reaction of Selenide 1 or 3 with Concentrated D₂SO₄. Selenide 1 or 3 was dissolved in concd D₂SO₄ (98%) at room temperature. The reaction was followed immediately by ¹H, ¹³C, and ⁷⁷Se NMR spectroscopy. The D₂SO₄ solution was then poured into ice-water, and the solution was neutralized with dilute sodium hydroxide solution. The solution was extracted with chloroform and evaporated in vacuo. The product was purified by preparative liquid chromatography to afford the selenoxide 5 (71%) or the sulfoxide 6 (92%).

Spectral data for selenurane dications **2** and **4** in D₂SO₄ are presented as follows. **2**: ¹H-NMR (D₂SO₄) δ 4.07, 4.59 (ABq, J = 16.0 Hz, 8H, CH₂), 7.04 (d, J = 7.6 Hz, 4H, ArH), 7.33 (t, J = 7.6 Hz, 2H, ArH); ¹³C-NMR (D₂SO₄) δ 41.3, 131.9, 134.8, 138.6, 142.3; ⁷⁷Se-NMR (D₂SO₄) δ 544 (t, J_{Se-H} = 28.3 Hz), 817 (s). **4**: ¹H-NMR (D₂SO₄) δ 4.05, 4.61 (ABq, J = 17.3 Hz, 8H, CH₂), 7.13 (d, J = 7.6 Hz, 4H, ArH), 7.34 (t, J = 7.6 Hz, 2H, ArH); ¹³C-NMR (D₂SO₄) δ 44.9, 130.1, 133.7, 139.1, 141.0; ⁷⁷Se-NMR (D₂SO₄) δ 918 (s).

Isolation of Diselenaselenurane Dication PF₆⁻ Salt (2a). A solution of NOPF₆ (83 mg, 0.45 mmol) in CH₃CN (7 ml) was added to tris-selenide 1 (100 mg, 0.23 mmol) in CH₂Cl₂ (15 ml) at -78 °C, and after 2 h the solution was allowed to come to 0 °C and stirred for an additional 3 h. After removal of solvent, the crude was recrystallized from ether-CH₂Cl₂-CH₃CN to afford the crystal 2a. 2a: 190 °C (decomp); ¹H-NMR (CD₃CN) δ 4.56, 5.06 (ABq, J = 15.8 Hz, 8H, CH₂), 7.53 (d, J = 7.6 Hz, 4H, ArH), 7.79 (t, J = 7.6 Hz, 2H, ArH); ¹³C-NMR (CD₃CN) δ 39.7, 132.2, 135.3, 141.6; ⁷⁷Se-NMR (CD₃CN) δ 535 (t, J_{Se-H} = 27.8 Hz), 830 (s); ³¹P-NMR spectrum shows ³¹P peak at δ -145 (sept, J_{PF} = 707 Hz; relative to H₃PO₄), in the region of ionic PF₆⁻. Anal. Calcd for C₁₆H₁₄Se₃P₂F₁₂: C, 26.21; H, 1.92. Found: C, 26.39; H, 1.82.

Isolation of Dithiaselenurane Dication PF₆ Salt (4a). The selenurane 4a was prepared by the same procedures as 2a. 4a: 180 °C (decomp); ¹H-NMR (CD₃CN) δ 4.60, 5.10 (ABq, J = 16.2 Hz, 8H, CH₂), 7.59 (d, J = 7.6 Hz, 4H, ArH), 7.78 (t, J = 7.6 Hz, 2H, ArH); ¹³C-NMR (CD₃CN) δ 43.4, 131.0, 135.7, 140.5; ⁷⁷Se-NMR (CD₃CN) δ 947 (s); ³¹P-NMR (CD₃CN) δ -145 (sept, J_{PF} = 707 Hz).

Reaction of Selenurane 2a with Benzenethiol. To a solution of selenurane dication salt 2a (20 mg, 0.027 mmol) in anhydrous CH₃CN (3 ml) was added a solution of benzenethiol (5.5 μl, 0.054 mmol) at 0 °C under an Ar atmosphere. The mixture was stirred for 5 min. After usual work-up, the products were purified by silica-gel column chromatography (eluent, hexane-CHCl₃) to give selenide 1 (85% yield) and diphenyl disulfide (87% yield).

Reaction of Selenurane 2a with Triphenylphosphine. To a solution of selenurane dication salt 2a (20 mg, 0.027 mmol) in anhydrous CH₃CN (3 ml) was added a solution of triphenylphosphine (15.4 mg, 0.059 mmol) in anhydrous CH₃CN (2.5 ml) at 0 °C under an Ar atmosphere. The mixture was stirred for 5 min. After usual work-up, the products were purified by silica-gel column chromatography (eluent, hexane-CHCl₃) to give selenide 1 (90% yield) and triphenylphosphine oxide (76% yield).

Reaction of Selenurane 2a with Samarium Iodide. To a solution of selenurane dication salt 2a (10 mg, 0.014 mmol) in anhydrous THF (5 ml) was added a solution of SmI₂ (0.03 mmol) in anhydrous THF (5 ml) at 0 °C under an Ar atmosphere. The mixture was stirred for 30 min. After usual work-up, the

products were purified by silica-gel column chromatography (eluent, hexane-CHCl₃) to give selenide 1 (99% yield).

Acknowledgment

This work was supported in part by grants (No. 07215284, No. 08640700) from the Ministry of Education, Science and Culture, Japan.

REFERENCES AND NOTES

- For a review: Hayes, R. A.; Martin, J. C. 'Sulfurane Chemistry' In Organic Sulfur Chemistry, Theoretical and Experimental Advances; Bernardi, F.; Csizmadia, I. G.; Mangini, A., Eds.; Elsevier: Amsterdam, 1985; Chapter 8.
- (a) 'The Chemistry of Organic Selenium and Tellurium Compounds'; Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1986; vol. 1, 1987; vol. 2. The term selenurane (selenane) has been used for tetracoordinate selenium (IV) compounds. (b) 'Selenium Reagents and Intermediates in Organic Synthesis'; Paulmier, C. Pergamon Press, 1986.
- 3. Fujihara, H.; Akaishi, R.; Erata, T.; Furukawa, N. J. Chem. Soc., Chem. Commun. 1989, 1789-1790; Iwasaki, F.; Morimoto, M.; Yasui, M.; Akaishi, R.; Fujihara, H.; Furukawa, N. Acta Crystallogr. 1991, C47, 1463-1466.
- 4. Fujihara, H.; Mima, H.; Erata, T.; Furukawa, N. J. Am. Chem. Soc. 1992, 114, 3117-3118.
- Gellatly, R. P.; Ollis, W. D.; Sutherland, I. O. J. Chem. Soc., Perkin Trans 1, 1976, 913-925;
 Brieaddy, L. E.; Hurlbert, B. S.; Mehta, N. B. J. Org. Chem. 1981, 46, 1630-1634.
- 6. All ⁷⁷Se-chemical shifts (⁷⁷Se: spin 1/2, natural abundance 7.6%) are relative to Me₂Se.
- 7. The proton-decoupled ⁷⁷Se NMR (76.3 MHz) spectrum of 1 in CHCl₃ shows that the Se peak of -SeCH₂Ar appears as a singlet at δ 366. The value of ²J(⁷⁷Se, H_A or H_B) is likely related to the Se-C-H dihedral angle.
- 8. Iwasaki, F.; Toyoda, N.; Yamazaki, N.; Fujihara, H.; Furukawa, N. *Acta Crystallogr.*, **1990**, *C46*, 2154-2157.
- 9. Concd H₂SO₄ acts either as an oxidant or as a strong acid: Bard, A. J.; Ledwith, A.; Shine, H. J. Adv. Phys. Org. Chem., 1976, 12, 155.
- 10. The ⁷⁷Se peak of -SeCH₂Ar for **2** appears as a triplet peak (${}^{2}J_{\text{Se-H}} = 28 \text{ Hz}$) at δ 544 in the proton-coupled ⁷⁷Se NMR spectrum.
- 11. Powell, R. L.; Hall, C. D. J. Am. Chem. Soc. 1969, 91, 5403-5404.
- 12. Bodea, C.; Silberg, I. Adv. Heterocycl. Chem. 1968, 9, 321-460.
- 13. Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693-2698; Soderquist, J. A. Aldrichimica Acta, 1991, 24, 15-23.

(Received in Japan 20 May 1996; accepted 17 June 1996)